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Abstract. We have given some arguments that a two-dimensional Lorentz-invariant
Hamiltonian may be relevant to the Riemann hypothesis concerning zero points of the Riemann
zeta function. Some eigenfunction of the Hamiltonian corresponding to infinite-dimensional
representation of the Lorentz group have many interesting properties. Especially, a relationship
exists between the zero zeta-function condition and the absence of trivial representations in the
wavefunction. We also give a heuristic argument for the validity of the hypothesis.

The Riemann hypothesis (RH) [1–3] is one of the long-standing problems in the number
theory. The Riemann’s zeta functionζ(z) for a complex variablez is defined for Rez > 1
by

ζ(z) =
∞∑
n=1

1

nz

and for other values ofz by its analytic continuation. It is well known thatζ(z) is zero for
negative even integer values ofz, i.e. z = −2,−4,−6, . . ., while all other non-trivial zeros
of ζ(z) must lie in the strip 0< Rez < 1. It has been conjectured that all non-trivial zeros
of ζ(z) actually lie on the critial line Rez = 1

2. This RH is important in number theory,
since its validity can answer some questions concerning distributions of the prime numbers.

It has been suggested by many authors that the problem may be related to eigenvalue
spectra of a self-adjoint operatorH in some Hilbert space, although any suchH has not
been found so far. This view has been strengthened by the works of Odlyzko [4] and of
others (see e.g. [5, 6] and references therein) that the statistical distribution of zero points of
ζ(z) is consistent to a high degree with the law of the Gaussian unitary ensemble of random-
matrix theory [5], which is expected for spectra of complex Hamiltonians. Moreover, this
fact is also found to be related to the phenomenon of quantum chaos [6, 7]. A widely held
opinion among many authors is that the validity of the RH with its associated Hamiltonian,
if it exists, will shed light on quantum chaos and vice versa.

The purpose of this paper is to show the existence of a one-parameter family of complex
Hamiltonians which seems to be intimately connected with the problem. Moreover, these
Hamiltonians are invariant under two-dimensional Lorentz transformation, a fact which will
be of some intrinsic interest in its own right.

We start from the following integral representation [8] ofζ(z):

ζ(z) = 1

(1− 21−z)0(z)

∫ ∞
0

dt
t z−1

1+ expt
(Rez > 0) (1)
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so that any non-trivial zero ofζ(z) must satisfy∫ ∞
0

dt
t z−1

1+ expt
= 0 (1> Rez > 0). (2)

We call equation (2) the zero zeta-function condition (ZZFC). Also in view of the identity

21−z0(z)ζ(z) cos
(π

2
z
)
= πzζ(1− z) (3)

we may restrict ourselves to consideration of only the half sector 1> Rez > 1
2 instead

of 1 > Rez > 0 for the ZZFC. If we can show that the assumption of 1> Rez > 1
2 for

ζ(z) = 0 will lead to a contradiction, this will prove the RH.
Suppose now that a HamiltonianH is Hermitian in a Hilbert space, so that we have

〈Hφ|ψ〉 = 〈φ|Hψ〉 (4)

for wavefunctionsφ andψ . For a complexz satisfying ZZFC, i.e. equation (2), we set

z = 1
2 + iλ. (5)

If H possessses an eigenfunctionφ0 with the eigenvalueλ, i.e. if we have

Hφ0 = λφ0 (6)

then equation (4) withψ = φ = φ0 will give λ = λ being real and hence Rez = 1
2, proving

RH. The natural question is whether such aH exists or not. Although we did not really
succeed in this aim, we have found some pairs(H, φ0) satisfying the required conditions.
The problem is that theφ0 found is not normalizeable, indicating that the spectrum ofH is
perhaps continuous rather than discrete. If so, the proposed Hamiltonian will not be directly
relevant to the RH. However, there exists an intriguing connection between the ZZFC and
the representation space of the Lorentz group under whichH is invariant, and we can give
a heuristic argument in favour of the validity of RH. These facts suggest that the present
formulation may not be directly but indirectly relevant to the problem.

Let φ(x, y) andψ(x, y) be functions of two real variablesx andy. We introduce the
inner product by

〈φ|ψ〉 =
∫ ∞
−∞

dx
∫ ∞

0
dy φ(x, y)ψ(x, y). (7)

Hereafter,φ(x, y), for example, stands for the complex conjugate ofφ(x, y). Note that the
ranges of the integrations are∞ > x > −∞ for x but∞ > y > 0 for y. Consider a family
of second-order differential operators given by

H = ∂2

∂x∂y
+ iβy

∂

∂y
+ i(1− β)x ∂

∂x
+ i

2
(8)

for real parameterβ. We note first thatH is complex rather than real and second that it
contains a purely imaginary constant term i/2 whose presence is crucial for the hermiticity
property ofH , as we will see below. By a simple calculation, it is easy to find

(Hφ)ψ − φ(Hψ) = ∂

∂x
J1+ ∂

∂y
J2 (9a)

where we have set

J1 = 1

2

(
∂φ

∂y
ψ − φ ∂ψ

∂y

)
− i(1− β)xφψ (9b)

J2 = 1

2

(
∂φ

∂x
ψ − φ ∂ψ

∂x

)
− iβyφψ. (9c)
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Note that the presence of the constant term i/2 in the right-hand side of equation (8) is
pivotal in enabling us to obtain equations (9). Integrating both sides of equation (9), we
would find the hermiticity condition equation (4), if we could discard all partially integrated
terms involvingJ1 and J2. From the explicit expressions ofJ1 and J2 given above, this
would be possible, ifφ andψ or their derivatives with respect tox vanish aty = 0, and if
φ andψ as well as their derivatives decrease sufficiently rapidly forx →±∞ andy →∞.
Of course, we have to study more carefully the question of the domain and range ofH

in order to establish the self-adjointness ofH . However, the naive criteria given above
suffices for this discussion. Especially, ifφ satisfies equation (6), i.e.

Hφ = λφ (10a)

with the boundary condition

φ(x, 0) = 0 (10b)

at y = 0 and if φ(x, y) decreases rapidly at infinity, this may lead to the RH in principle.
We note that equation (10a) with z = 1

2 + iλ implies the validity of{
∂2

∂x∂y
+ iβy

∂

∂y
+ i(1− β)x ∂

∂x

}
φ = −izφ. (11)

We have yet to meaningfully utilize the ZZFC in our formalism. Before going into detail,
we will first, however, note the following property of the Hamiltonian.H as well as the
inner product〈φ|ψ〉 are clearly invariant under the transformation

x → 1

k
x and y → ky (12)

for any positive constantk. This invariance really reflects that of a two-dimensional Lorentz
transformation. To understand it better, consider new variablesu andv given by

x = u− v y = u+ v. (13)

The HamiltonianH is then invariant under the SO(1, 1) Lorentz transformation

u→ u′ = (coshθ)u+ (sinhθ)v

v→ v′ = (sinhθ)u+ (coshθ)v
(14)

for real constantθ , corresponding to the boost parameterk = expθ . Because of the
invariance, ifφ satisfiesHφ = λφ, then so doesφ(x

k
, ky), and hence

φ̃(x, y) =
∫ ∞

0

dk

k
f (k)φ

(x
k
, ky

)
(15)

for an arbitrary function,f (k) also satisfiesHφ̃ = λφ̃. In particular, any eigenfunction
φ(x, y) of H may be regarded as a infinite-dimensional realization of the Lorentz group
SO(1, 1).

After these preparations, we will now discuss solutions of the differential equation (11).
We have found the following two families of solutions. Letg(ξ) be an arbitrary function
of a variableξ which vanishes fast forξ →∞. Then, we show first that

φ(x, y) =
∫ ∞

0
dt t z−1 exp{ixt1−β}g(t + ytβ) (Rez > 0) (16)

whereξ = t + ytβ is a solution ofHφ = λφ with z = 1
2 + iλ. In this connection if we

changex ↔ y and β ↔ 1− β, it will furnish another solution. This can be proved as
follows. For simplicity, set

G0(x, y; t) = exp{ixt1−β}g(t + ytβ) (17a)
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and note thatG0 satisfies a differential equation{
∂2

∂x∂y
+ iβy

∂

∂y
+ i(1− β)x ∂

∂x

}
G0 = it

∂

∂t
G0 (17b)

as we can easily verify. Multiplyingt z−1 and integrating overt from t = ∞ to t = 0,
reproduces equation (11) if Rez > 0. The special choice

g(ξ) = 1

1+ expξ

is of particular interest. Then, the functionf0 given by

f0(x, y) =
∫ ∞

0
dt

t z−1

1+ exp[t + ytβ ]
exp(ixt1−β) (18a)

obeys

Hf0 = λf0 (18b)

although the ZZFC implies only

f0(0, 0) = 0 (19)

at the single pointx = y = 0, instead of the desired boundary condition equation (10b) for
arbitraryx. As we will see later,f0(x, y) is intimately related to the zeta function.

We can also find another class of solutions as follows. Let us now consider

G1(x, y; u) = uθ−1

(1− u)θ e−iuxyg(yuβ(1− u)1−β) (20)

for a constantθ with ξ = yuβ(1−u)1−β for arbitrary functiong(ξ). We can verify thatG1

satisfies the differential equation{
∂2

∂x∂y
+ iβy

∂

∂y
+ i(1− β)x ∂

∂x

}
G1− i

∂

∂u
{u(1− u)G1} = −iθG1. (21)

Integrating equation (21) fromu = 1 to u = 0, and assuming 1> Reθ > 0, we obtain

Hf1 = λ1f1 (22a)

with

θ = 1
2 + iλ1 (22b)

if we set

f1(x, y) =
∫ 1

0
duG1(x, y, u). (22c)

In order to obtain a solution which satisfies equation (10b), we letx → 1
k(t)
x andy → k(t)y

for an arbitrary functionk(t) of a new variablet , and integrate equation (22c) on t after
multiplying by t z−1(1+ expt)−1. In this way, we generate a new family of solutions. In
summary, the function

φ1(x, y) =
∫ ∞

0
dt

t z−1

1+ expt

∫ 1

0
du

uθ−1

(1− u)θ e−iuxyg(ξ) (23a)

with

ξ = k(t)yuβ(1− u)1−β (23b)
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for arbitrary functionsk(t) of t andg(ξ) of ξ is a solution of

Hφ1 = λ1φ1 (θ = 1
2 + iλ1). (24)

Moreover, ifg(0) exists and is finite, then the ZZFC will give the desired boundary condition

φ1(x, 0) = 0 (25)

for 1 > β > 0, sincey = 0 implies ξ = 0. Therefore, with the choice ofθ = z and
henceλ1 = λ, the essential conditions equations (10) will be obeyed forφ = φ1. However,
a difficulty is that it appears to lead to〈φ1|φ1〉 = ∞ in general. This suggests that the
spectrum ofH is continuous rather than discrete. If so,H may have nothing directly
to do with the RH. However, there exists an indication that this formulation may not be
completely irrelevant to the problem as will be explained below.

The functionf0(x, y) introduced by equation (18a) may also be related to RH for
the following reason. We will first state, without proof, that there exist some constants
C0, C1, C2, andC3 such that

|f0(x, y)| 6 C0 (26a)

|f0(x, y)| 6 C1y
− 1
β

Rez (26b)

|f0(x, y)| 6 C2|x|−
1

1−β Rez (26c)

|f0(x, y)| 6 C3|xy|−Rez (26d)

under the assumption of

1> β > 0. (27)

If we have Rez > 1
2, then〈f0|f0〉 is finite and the functionf0(x, y) will furnish a infinite-

dimensionalunitary realization of the Lorentz group SO(1, 1) with or without the ZZFC.
Moreover, if the ZZFC is assumed, we will have first, the orthogonality relation∫ ∞

0
dx
∫ ∞

0
dy G(xy)f0(x, y) =

∫ ∞
−∞

dx
∫ ∞

0
dy G(xy)f0(x, y) = 0 (28)

for an arbitrary functionG(ξ) with ξ = xy, which will vanish sufficiently fast forξ →∞.
Second, also under the ZZFC, the following is satisfied:∫ ∞

0

dk

k
f0

(x
k
, ky

)
= 0. (29)

We can show this as follows. We rewrite the left-hand side integral of equation (29) as

J =
∫ ∞

0

dk

k
f0

(x
k
, ky

)
=
∫ ∞

0
dt t z−1

∫ ∞
0

dk

k

exp(i x
k
t1−β)

1+ exp[t + kytβ ]

and change the variablek into k→ k′ = ktβ−1 to find

J =
∫ ∞

0
dt t z−1

∫ ∞
0

dk′

k′
exp(ix/k′)

1+ exp[(1+ k′y)t ] .

Interchanging the order of the integrals and lettingt → t ′ = (1+ k′y)t , leads to

J =
∫ ∞

0

dk′

k′
exp(ix/k′)
(1+ k′y)z

∫ ∞
0

dt ′
(t ′)z−1

1+ expt ′

which vanishes identically by the ZZFC.
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Equation (28) can then be shown by changing the variabley into k and then letting
x → ξ = kx to calculate∫ ∞

0
dk
∫ ∞

0
dx G(kx)f0(x, k) =

∫ ∞
0

dk
∫ ∞

0

dξ

k
G(ξ)f0

(
ξ

k
, k

)
=
∫ ∞

0
dξ G(ξ)

∫ ∞
0

dk

k
f0

(
ξ

k
, k

)
which is zero by equation (29).

The condition (29) can be interpreted as implying that the infinite-dimensional
representation space of SO(1, 1), spanned byf0(x, y) does not contain any singlet
representation of the group. This is because the left-hand side of equation (29) is precisely
the Lorentz-invariant component contained in the representation space, since it is invariant
underx → 1

α
x andy → αy for any positive constantα. Then, the orthogonality relation

equation (28) can be readily recognized as the one between two mutually inequivalent
representations of SO(1, 1) sinceG(xy) is clearly a Lorentz scalar. Such a relationship
between the conditionζ(z) = 0 and the absence of a trivial representation of SO(1,1) in
f0(x, y) is quite intriguing and may indicate thatf0(x, y) somehow plays a role in the RH.

We can now give a heuristic argument for the validity of RH as follows. Assuming
Rez > 1

2 and 1> β > 0, we first calculate

J (k1, k2) =
∫ ∞
−∞

dx
∫ ∞

0
dy f0

(
x

k1
, k1y

)
f0

(
x

k2
, k2y

)
(30)

for k1 > 0 and k2 > 0. Because of the Lorentz invariance,J (k1, k2) is actually only a
function of the variableξ = k2/k1, i.e.

J (k1, k2) = J (1, k2/k1). (31)

Rewriting

f0

(x
k
, ky

)
= k

z
1−β

1− β
∫ ∞

0

ds

s
s

z
1−β

exp(ixs)

1+ exp[(ks)
1

1−β (1+ y

s
)]

we integrate first on thex-variable by using the Plancherel formula of Fourier integral
theory. We then lety → y ′ = y/s and change thes-variable intos ′ = s(1+ y ′)1−β as in
the derivation of equation (29). In this way, we calculate

J (k1, k2) = 2π

2 Rez − 1

(k1)
z

1−β (k2)
z

1−β

(1− β)2
∫ ∞

0

ds

s

s
2

1−β Rez

[1+ exp(k1s)
1

1−β ][1 + exp(k2s)
1

1−β ]
. (32)

We can verify the validity of equation (31) by further lettings → s ′ = k1s. The appearance
of the denominator factor(2 Rez − 1)−1 is due to the integration of∫ ∞

0
dy ′

1

(1+ y ′)z+z =
1

2 Rez − 1

which requires Rez > 1
2. Another way of deriving equation (32) is to integrate both

sides of equation (9a) identifying φ(x, y) = f0(
x
k1
, k1y) andψ(x, y) = f0(

x
k2
, k2y). Since

Hφ = λφ, andHψ = λψ , the left-hand side of equation (9a) will then give

(λ− λ)J (k1, k2) = i(2 Rez − 1)J (k1, k2)

which also accounts for the factor(2 Rez−1)−1 in equation (32). We note that the integration
of the right-hand side of equation (9a) will now give a non-zero contribution sincef0(

x
k
, ky)

and its derivative will not vanish aty = 0.
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Let φ(k1, k2) be a function ofk1 andk2 to be specified below and set

I =
∫ ∞

0
dk1

∫ ∞
0

dk2 φ(k1, k2)J (k1, k2)

=
∫ ∞

0
dk1

∫ ∞
0

dk2 φ(k1, k2)

∫ ∞
−∞

dx
∫ ∞

0
dy f0

(
x

k1
, k1y

)
f0

(
x

k2
, k2y

)
. (33)

Noting equation (31), we can calculate

I =
∫ ∞

0

dξ

ξ
ψ(ξ)J (1, ξ) (34)

whereψ(ξ) is given by

ψ(ξ) = ξ
∫ ∞

0
dk1 k1 φ(k1, ξ k1). (35)

Assumingφ(k1, k2) = φ(k2, k1), we easily see thatψ(ξ) must satisfy a functional equation

ψ

(
1

ξ

)
= ψ(ξ). (36)

At any rate, equation (32) will lead to

I = 2π

2 Rez − 1

∫ ∞
0

ds
sz−1

1+ exps

∫ ∞
0

dt
t z−1

1+ expt
ψ(sβ−1t1−β) (37)

after some calculations. Although we have to interchange orders of several integrals for the
derivations of equations (32) and (37), these can be justified. We also note thatI is real for
realψ(ξ) because of equation (36).

We now chooseφ(k1, k2) to be given by

φ(k1, k2) = 1

k1k2
(k1+ k2)

δ exp[−α(k1+ k2)] (38)

for positive numbersδ andα. We can then calculate

ψ(ξ) =
∫ ∞

0

dk1

k1
[(1+ ξ)k1]δ exp[−α(1+ ξ)k1]

=
∫ ∞

0
dt t δ−1 exp(−αt) = α−δ0(δ) (39)

by changingk1 into t = (1 + ξ)k1. Sinceψ(ξ) is a constant, independent ofξ , then
equation (37) impliesI = 0 identically because of the ZZFC and hence we must have∫ ∞

0

dk1

k1

∫ ∞
0

dk2

k2
(k1+ k2)

δ exp[−α(k1+ k2)]

×
∫ ∞
−∞

dx
∫ ∞

0
dy f0

(
x

k1
, k1y

)
f0

(
x

k2
, k2y

)
= 0 (40)

for any δ > 0 andα > 0. We will now come to a murkier part. We first letδ → 0,
and assume that we can interchange the order of the limit and integrals. If we can further
interchange the order ofk1 andk2 integrals and ofx andy integrals, this will lead to∫ ∞

−∞
dx
∫ ∞

0
dy |A(x, y)|2 = 0 (41a)

with

A(x, y) =
∫ ∞

0

dk

k
exp(−αk)f0

(x
k
, ky

)
. (41b)
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Since the integrand of equation (41a) is non-negative, this requires∫ ∞
0

dk

k
exp(−αk)f0

(x
k
, ky

)
= 0

for arbitrary positiveα. This is clearly not possible. The contradiction can be avoided if
the zero pointz satisfies Rez = 1

2, i.e. the validity of the RH.
However, there is something wrong with the above reasoning. We have assumed only

Rez > 1
2 so that the conclusion should also be valid for Rez = 1. However, this cannot be

correct for the following reason. Note that

f0(0, 0) =
∫ ∞

0
dt

t z−1

1+ expt

should be zero for Rez = 1 at z = 1+ (2πni/ log 2) for any non-zero integer value ofn,
since equation (1) implies otherwise thatζ(z) would possess poles at these points because of
the denominator factor proportional to 1−21−z. The most likely culprit for this dilemma is
the indiscrimiate interchanges of orders of the limitδ→ 0 and of integrals in the last stage
of the demonstration. Unless we can give a rigorous justification for these interchanges only
for 1

2 < Rez < 1, the derivation given here must be regarded at best as a possible plausible
argument which may or may not be correct. We hope that a more satisfactory method with
a more directly appropriate Hamiltonian will be found in the future.

In conclusion, we make the following remark: in order to emphasize the dependence
of f0(x, y) upon parametersβ andz, we now explicitly write it as

F0(x, y, z;β) = 1

0(z)

∫ ∞
0

dt
t z−1

1+ exp(t + ytβ) exp(ixt1−β) (42)

so thatf0 = 0(z)F0 and it satisfies the differential equation{
∂2

∂x∂y
+ iβy

∂

∂y
+ i(1− β)x ∂

∂x

}
F0 = −izF0 (43a)

as well as
∂

∂x
F0(x, y, z;β) = iF0(x, y, z + 1− β;β)0(z + 1− β)/0(z). (43b)

For the special casesβ = 0 andβ = 1, it reproduces the zeta function and its generalizations.
For β = 1, we change the integration variablet into t ′ = (1+ y)t and recall equation (1)
to obtain

F0(x, y, z; 1) = (1− 21−z)ζ(z)
eix

(1+ y)z . (44)

For β = 0, we calculate

F0(x, y, z; 0) = e−y8(−e−y, z,1− ix) (45)

where8(ξ, z, η) is the generalized zeta function defined by

8(ξ, z, η) =
∞∑
n=0

(η + n)−zξn (46)

which converges for|ξ | < 1, η 6= 0,−1,−2,−3, . . .. When we use the integral
representation [8] of

8(ξ, z, η) = 1

0(z)

∫ ∞
0

dt
t z−1

1− ξe−t
e−ηt (47)
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for Re η > 0, Re z > 0, |ξ | 6 1, ξ 6= 1, and compare it with equation (42), we find
equation (45). SinceF0 satisfies equation (43a), we see that8 must be a solution of the
differential equation{

ξ
∂2

∂ξ∂η
+ η ∂

∂η

}
8(ξ, z, η) = −z8(ξ, z, η) (48)

which can also be easily verified from equation (46) but appears to have been overlooked
in the literature.

In conclusion, we have attempted in this paper to present some arguments for the
possible relevance of our Hamiltonian to the RH. Although they may not be the ultimate
answer to the problem, there are at least some indications that they may be indirectly useful.
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